首页> 外文OA文献 >Justifying additive-noise-model based causal discovery via algorithmic information theory
【2h】

Justifying additive-noise-model based causal discovery via algorithmic information theory

机译:通过算法证明基于加法 - 噪声模型的因果发现   信息论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A recent method for causal discovery is in many cases able to infer whether Xcauses Y or Y causes X for just two observed variables X and Y. It is based onthe observation that there exist (non-Gaussian) joint distributions P(X,Y) forwhich Y may be written as a function of X up to an additive noise term that isindependent of X and no such model exists from Y to X. Whenever this is thecase, one prefers the causal model X--> Y. Here we justify this method by showing that the causal hypothesis Y--> X isunlikely because it requires a specific tuning between P(Y) and P(X|Y) togenerate a distribution that admits an additive noise model from X to Y. Toquantify the amount of tuning required we derive lower bounds on thealgorithmic information shared by P(Y) and P(X|Y). This way, our justificationis consistent with recent approaches for using algorithmic information theoryfor causal reasoning. We extend this principle to the case where P(X,Y) almostadmits an additive noise model. Our results suggest that the above conclusion is more reliable if thecomplexity of P(Y) is high.
机译:一种最新的因果发现方法在许多情况下都能够推断X原因Y或Y是否仅对两个观察到的变量X和Y导致X。这是基于观察到存在(非高斯)联合分布P(X,Y)其中Y可以作为X的函数写成一个与X无关的加性噪声​​项,并且从Y到X不存在这样的模型。在这种情况下,人们都倾向于使用因果模型X->Y。通过显示因果假设Y-> X不太可能,因为它需要在P(Y)和P(X | Y)之间进行特定的微调,以生成一个允许从X到Y的加性噪声​​模型的分布。要求我们导出由P(Y)和P(X | Y)共享的算法信息的下界。这样,我们的论证与使用算法信息论进行因果推理的最新方法是一致的。我们将此原理扩展到P(X,Y)几乎允许加性噪声模型的情况。我们的结果表明,如果P(Y)的复杂度较高,则上述结论更为可靠。

著录项

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号